Musical instrument recognition using cepstral coefficients and temporal features
نویسندگان
چکیده
In this paper, a system for pitch independent musical instrument recognition is presented. A wide set of features covering both spectral and temporal properties of sounds was investigated, and their extraction algorithms were designed. The usefulness of the features was validated using test data that consisted of 1498 samples covering the full pitch ranges of 30 orchestral instruments from the string, brass and woodwind families, played with different techniques. The correct instrument family was recognized with 94% accuracy and individual instruments in 80% of cases. These results are compared to those reported in other work. Also, utilization of a hierarchical classification framework is considered.
منابع مشابه
Timbre Recognition with Combined Stationary and Temporal Features
In this paper we consider the problem of modeling spectro-temporal behaviour of musical sounds, with applications for musical instrument recognition. Using instanteneous sound features, such as cepstral envelopes and cepstral derivatives, the temporal evolution of the sound is transcribed into a new representation as a sequence of spectral features. Applying information-theoretic sequence match...
متن کاملComparison of Features for Musical Instrument Recognition
Several features were compared with regard to recognition performance in a musical instrument recognition system. Both mel-frequency and linear prediction cepstral and delta cepstral coefficients were calculated. Linear prediction analysis was carried out both on a uniform and a warped frequency scale, and reflection coefficients were also used as features. The performance of earlier described ...
متن کاملA Study : Analysis of Music Features for Musical Instrument Recognition and Music Similarity Search
Lots of work has been done on speech and speaker recognition. Many technologies were developed for the analysis of speech waveforms. Musical instrument recognition is an important aspect of music information retrieval system. In this paper we analyzed features for musical instruments recognition and a brief study on music similarity. Music similarity search is done by using mel-frequency cepstr...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملA Hidden Markov Model Based Approach To Music Segmentation and Identification
Classification of musical segments is an interesting problem. It is a key technology in the development of content-based audio document indexing and retrieval. In this paper, we apply the feature extraction and modeling techniques commonly used in automatic speech recognition to solving the problem of segmentation and instrument identification of musical passages. The correlation among the diff...
متن کامل